If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^2x-9=1/125
We move all terms to the left:
5^2x-9-(1/125)=0
We add all the numbers together, and all the variables
5^2x-9-(+1/125)=0
We get rid of parentheses
5^2x-9-1/125=0
We multiply all the terms by the denominator
5^2x*125-1-9*125=0
We add all the numbers together, and all the variables
5^2x*125-1126=0
Wy multiply elements
625x^2-1126=0
a = 625; b = 0; c = -1126;
Δ = b2-4ac
Δ = 02-4·625·(-1126)
Δ = 2815000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2815000}=\sqrt{2500*1126}=\sqrt{2500}*\sqrt{1126}=50\sqrt{1126}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{1126}}{2*625}=\frac{0-50\sqrt{1126}}{1250} =-\frac{50\sqrt{1126}}{1250} =-\frac{\sqrt{1126}}{25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{1126}}{2*625}=\frac{0+50\sqrt{1126}}{1250} =\frac{50\sqrt{1126}}{1250} =\frac{\sqrt{1126}}{25} $
| (6x-21)°+105=75 | | (6x-21)=75 | | 3•y=3+y | | 6=48-r | | 4x+2(3x+6)=32 | | x=±−4055 | | F(x)=5×2^x | | -9w+8+5w=28 | | u/8=13/11 | | 9x²-4x+8=12 | | 3w-44=5(w-6) | | 3w-44=5(w-60 | | (2x+59)=(5x+50) | | -3x+1=x+2 | | 3(4)-5=6y+1 | | 6x-19=56 | | (4x+36)+(7x+78)=180 | | x-0.7=4.3;x=3.6 | | 9x+16=75 | | -2a+3=a+2 | | 8.25+7=14.5t+12 | | 10/x+6=5/6 | | 3x+27=85 | | -2(w-7)=6w+6 | | 4.14=f=5.32 | | 3m=23+7 | | 6^4x+6=36^5 | | 6x-23=65 | | 64x+6=365 | | 1/4k-7=3/4k+3 | | 14b+6=14b+3 | | 3x-23=65 |